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Glossary 
 
FFR = Fractional Flow Reserve 
 
CCTA = Coronary Computed Tomography Angiography 
 
I-FFR = Invasive Fractional Flow Reserve 
 
CT-FFR = Computed Tomography Fractional Flow Reserve 
 
B-FFR = Benchtop Fractional Flow Reserve 
 
ROC = Receiver Operating Characteristic 
 
AUC = Area Under the Curve 
 
STL= Stereo Lithographic 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



                                                                                                                                           

 
 

P a g e  4 | 13 

 

Background and Rationale 
 
In the last few years there has been a significant push to develop and implement 
coronary blood flow estimation based on computed tomography angiography. 
Clinical trials such as FAME (Fractional Flow Reserve versus Angiography for 
Multivessel Evaluation) and FAME II demonstrated: “added benefit of physiologic 

information, specifically fractional flow reserve (FFR), above anatomic 
information alone, in guiding intervention in patients with multivessel coronary 
disease undergoing intervention and patients with stable coronary disease. 
Anatomic information with physiologic information obtained via FFR-CT, can 
help identify patients who would or would not benefit from revascularization. 
 
The results of these studies were very promising, however, some of these 
approaches failed to meet the required accuracy or required changes in acquisition 
protocols which increased the dose deliver to the patient. For example the 17-
center DeFACTO (Determination of Fractional Flow Reserve by Anatomic 
Computed Tomographic Angiography) study, showed that FFR-CT can improve 
diagnostic accuracy and discrimination versus CTA alone but failed to meet its 
pre-specified primary outcome goal for the level of per-patient diagnostic 
accuracy. We believe that these inaccuracies are a direct consequence of the 
arbitrary boundary conditions imposed in order to solve the Navier –Stokes 
equations and optimization of acquisition parameters.  
 
The main aim of this proposal is aligned with the studies above. We propose to 
improve the FFR-CT accuracy using the new opportunities offered by 3D printing. 
Namely we will develop very accurate coronary models using 3D printing and use 
these phantoms to optimize the FFR-CT approach. Next we propose to use the 
optimized approach to perform a small clinical study at Gates Vascular Institute 
where we will correlate the FFR-CT results with angio FFR and patient follow-up. 
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Summary of Proposed Research 
 
Coronary Computed Tomography Angiography (CCTA) contrast opacification 
gradients and FFR-CT estimation can aid in the severity estimation of significant 
atherosclerotic lesions. Following this trend, we recently developed a collaboration 
between Brigham and Women’s Hospital (BWH) and Gates Vascular Institute 

(GVI). We 3D-printed patient specific coronary phantoms at (GVI) and scanned 
them with a Toshiba Aquilion scanner to test several aspects of the contrast 
opacification gradients using a method established at BWH. Our initial results 
showed strong correlation between the flow in the phantom and opacification 
gradients. We believe that this approach could be further developed to test and 
validate FFR-CT algorithms. Currently, FFR-CT algorithms can only be optimized 
using theoretical models and can only be validated in large multi-center clinical 
trials. This phantom approach would allow optimization of FFR-CT algorithms 
with a measured validation technique without the need for large clinical trials. 
Thus we believe that this study will result in a FFR-CT algorithm/method with a 
better predictability for arterial lesion severity than those existing on the market 
today.  Our approach is to use the infrastructure at GVI to perform a detailed 
validation of the FFR-CT method using 3D printed patient specific phantoms. Each 
patient will have a 3D phantom printed, containing the culprit lesion and used in a 
benchtop flow analysis. Flow measurements will be compared with: CT-FFR for 
both patients and phantoms, angio lab FFR measurements and 30 days follow-up. 
This pilot clinical study will include ~50 patients over a year and half at GVI. We 
are confident that this approach performed via 3D-phantom testing will prove the 
validity of FFR-CT based measurements as well as develop a new standard for 
validating FFR-CT algorithms 
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Objectives 
 

o To build 50 3D printed patient specific phantoms for benchtop testing to 
determine pressure gradient along diseased vasculature 
 

o To perform a detailed validation of the FFR-CT method using 3D printed 
patient specific phantoms 

 
o Optimization of FFR-CT algorithms with a better predictability for arterial 

lesion severity without the need for large clinical trials 
 

 
 

Hypotheses 
 
Flow simulations in 3D printed patient specific phantoms will correlate with CT 
derived fractional flow reserve calculations. To demonstrate the concept feasibility, 
we propose to use 3D printed cardiac models for software validation using clinical 
evaluation as a gold standard. The clinical cases will be used both as ground truth 
to demonstrate the accuracy of the phantom validation as well as a pilot single-
center clinical evaluation to demonstrate similar results to previously published 
clinical trials for algorithms similar to those being tested. 
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Study Design/ Procedures 
 
Patients will be consented after CCTA. First requirement is that the patient has at 
least one lesion with >50% stenosis or 30-50% if clinically driven. Second 
requirement is that the patient undergoes a cath lab intervention. If one of the 
above requirements is not satisfied the patient will be removed from the study. 
Viable candidates based on inclusion/exclusion criteria will undergo clinically 
indicated first generation 320-detector row CCTA (Aquilion ONE, Canon Medical 
Systems, Tustin, CA) with 0.5 mm slice thickness, automated tube current 
modulation, 100 kVp, and a reconstructed voxel size of 0.625x0.625x0.5 mm. 
Next, the patient will undergo catheter lab procedure as clinically warranted. The 
invasive FFR will be done on the culprit lesion(s) for clinical purposes. Invasive 
FFR (I-FFR) will be recorded via pressure wire at a distance of two lesion lengths 
past the distal end of the lesion. A FFR cutoff value of less than or equal to 0.8 was 
used to determine hemodynamic significance.  
 
For each patient a 3D printed phantom will be made and tested. Segmentation will 
be performed in Vitrea, vascular mesh sculpting in Autodesk Meshmixer, and 3D 
printed in a Stratasys Eden 260V printer (Stratasys, Eden Prairie, MN) printer. 
Figure 1 shows the model development process. Each 3D printed patient-specific 
model will be connected to a flow loop using the CardioFlow 5000 MR 
programmable physiological pulsatile flow pump (Shelley Medical Imaging 
Technologies, Toronto, Ontario, Canada) and a Benchtop FFR will be obtained. 
This pump introduced a physiologic human cardiac waveform and provided also an 
ECG signal triggered at points within the cardiac waveform. The viscosity of blood 
(approximately 3.7 cP) will be mimicked using a glycerol water solution of 40% 
water and 60% glycerol and measured using a viscometer. Figure 2 shows the 
benchtop flow system. 
 
Reconstructed CCTA images were imported into Vitrea segmentation software 
(Vital Images, Minnetonka, MN) using the research-based CT-FFR algorithm [26-
28]. The software analyzes four data volumes acquired a 70-99% of the R-R 
interval and computes the FFR based on the changes in vessel diameter and 
computational fluid dynamics.  
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Figure 1:  Model development process. (a) The cardiac mesh was exported as a stereolithographic file from Vitrea into 
Autodesk Meshmixer. (b) The daughter branches off of the 3 main coronary arteries were cut off from the mesh. (c) The 
aortic root was extended at both the outlet and inlet with 30 mm diameter for later connections (red arrows).  Cylindrical 
meshes were appended (red circles) to the aortic root and each of the coronary arteries for later pressure sensor 
connections. (d) Each coronary artery was extended. (e) A plane cut was administered at the vessel outlets for parallel ends. 
(f) A 2 mm wall was generated while preserving the geometry of the arteries. (g) A support structure is positioned around 
the model and the Boolean union operation is administered. 

 

 

Figure 2:  Benchtop flow system. (a) A 3D printed patient-specific coronary model is connected to a flow loop using 
the Cardio Flow 5000 MR programmable physiological pulsatile flow pump (Shelley Medical Imaging Technologies, 
Toronto, Ontario, Canada). The flow loop consisted of two compliance chambers, at the aortic inlet (D1) and distal to 
the coronary arteries (D2) to control pressure oscillation and distal resistance. Aortic base pressure and distal flow 
rate were controlled by adjustable mechanical clamps (R1 and R2 respectively), and flow rate was recorded using an 
ultrasonic flow sensor (S). Flow direction is indicated by blue arrows. (b) Detailed side view of the 3D printed coronary 
model with pressure sensors connected to the aorta and the LAD. (c) Coronary waveform within the coronary flow 
pump software to determine the flow rate (mL/s) as a function of time in a single cardiac cycle. (d) 52 patient-specific 
3D printed coronary models assembled and ready to go through flow testing. 

 



                                                                                                                                           

 
 

P a g e  9 | 13 

 

Inclusion Criteria 
 

o Scheduled for clinically mandated elective invasive coronary angiography 
(ICA) or clinically mandated CTA 

o >18 yrs of age 
Exclusion Criteria 

o Less than 30 years of age 
o Atrial fibrillation 
o Renal insufficiency (estimated glomerular filtration rate (GFR)  <60 

ml/min/1.73 m2) 
o Active Bronchospasm prohibiting the use of beta blockers 
o Morbid obesity (body mass index 40 kg/m2) 
o Contraindications to iodinated contrast 
o Emergencies requiring immediate intervention or patients unable to consent 
o Patients not showing coronary calcium during Calcium Scoring procedures 

Sample Size 
To determine the numbers of phantoms needed for this study we treated 3D 
printing as a new diagnostic tool for which we needed to assess the accuracy of 
detecting significant FFR values. We used the sample size calculation proposed by 
Flahault et. al. [23].  

𝑛 =

(𝑧𝛼/2√𝑉̂(𝐴̂))

2

𝐿2
 

Since this is a technical feasibility study, we wanted to estimate the ROC area to 
within ±0.6; thus, L=0.12 and the confidence level was set at 0.92 which 
corresponds to z_(α/2)=1.75 .  For the variance function we used the formulation 
indicated by Obuchhowski et al. [24] who proposed an estimate of the variance 
function for the Receiver Operator Characteristic based on an exponential 
distribution.  

𝑉̂(𝐴̂) = (0.0099 × 𝑒
𝑎2

2⁄ ) × [(5𝑎2 + 8) + (5𝑎2 + 8)/𝑅] 
R denotes the ratio of the number of patients without the condition to patients with 
the condition in the study sample. Using results from previous reports on CT-FFR 
[25], we set R=1.2.   For an AUROC=0.8  the parameter may be set to 1.19 [24]. 
Thus the number of samples with FFR<=0.80 are approximatively 23 and the total 
number of subject given by N_total=n(1+R) is approximatively 52. 
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Study Flow Chart 
 

 
 
 
 
Statistical Analysis 
 
The absolute error as a percentage with 95% confidence intervals and Pearson 
correlation values will be calculated to assess the results obtained from the 
benchtop flow testing and the CT-FFR software and how they compared to the I-
FFR reference standard. A ROC curve will also be generated to determine the area 
under the curve (AUC) for B-FFR and CT-FFR when compared to I-FFR. 
Statistical analysis for the development of the ROC curves and correlation analysis 
will be completed within NCSS Statistical Software (NCSS, v.12, LLC, Kaysville, 
Utah). 
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